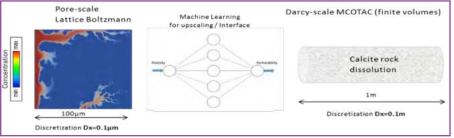
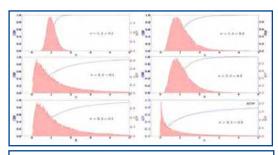

DONUT

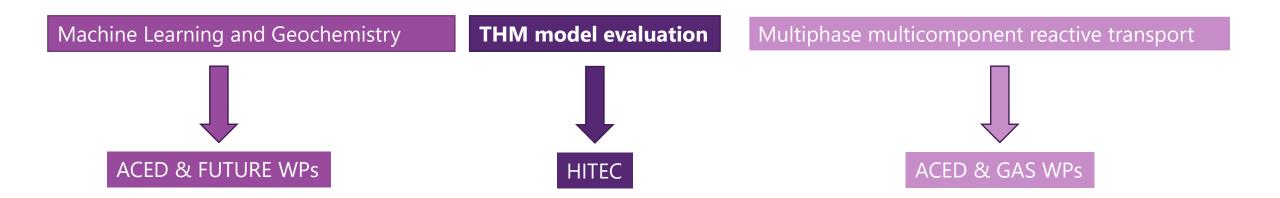
Development and improvement **O**f **NU**merical methods and **T**ools for modelling coupled processes


Eric Laloy & Diederik Jacques
Exchange meeting EURAD 25/10/2024

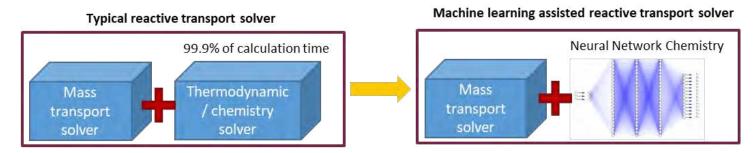
DONUT AT A GLANCE


Task 1 Management (Leader F. Claret & G. Pepin)

Task 2 Numerical methods for high performance computing of coupled processes (Leader C. Cances)


Task 3 Scale transition schemes for coupled processes (Leader O. Kolditz & N. Prasianakis)

Task 4 Tools and methods to quantify/derive uncertainties induce by coupled processes (Leader A. Baksay)


Task 5 Benchmarks of methods and tools for coupled processes (Leader D. Lukin)

Benchmarks of methods and tools for coupled processes

Machine learning & geochemistry

- RW disposal studies rely on reactive transport (RT) modelling to simulate, e.g.,
 - Cement and concrete degradation phenomena
 - The fate of radionuclides from drum matrix to the environment.

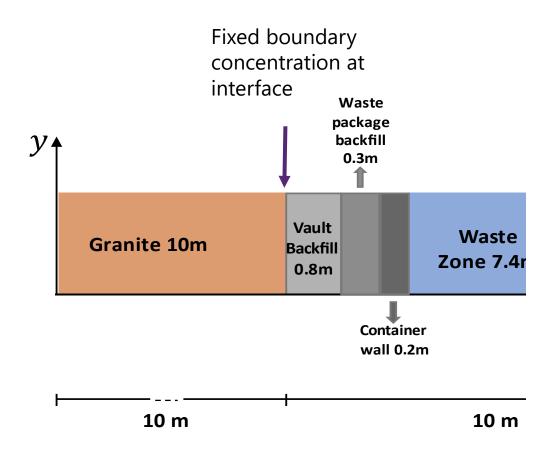
- RT models can be computationally demanding
 - Transport component ~ 5-25% of CPU time
 - Geochemical component ~ 75 95% of CPU time
- RT model acceleration by replacing the geochemical solver by a trained ML regression algorithm → speedup of 4 to 20

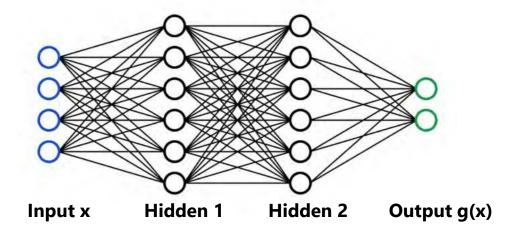
Participating teams

N.I. Prasianakis¹, E. Laloy², D. Jacques², J.C.L. Meeussen³, C. Tournassat⁴, G.D. Miron¹, D. A. Kulik¹, A. Idiart⁵, E. Demirer⁵, E. Coene⁵, B. Cochepin⁶, M. Leconte⁶, M. Savino^{6,7}, J. Samper II⁸, M. De Lucia⁹, C. Yang10, P. Sochala11, S. V. Churakov1,12, J. Samper8, O. Kolditz13, F. Claret14

- ¹ Laboratory for Waste Management, Paul Scherrer Institute, CH, 5232, Villigen PSI, Switzerland
- ² Engineered and Geosystems Analysis, Belgian Nuclear Research Centre, Belgium
- 3 Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands,
- ⁴Institut des Sciences de la Terre d'Orléans, Université d'Orléans—CNRS/INSU—BRGM, Orléans, France
- ⁵ AMPHOS 21 Consulting, S.L., Calle Venezuela, 103, 08019, Barcelona, Spain
- ⁶ ANDRA Andra, 1/7 Rue Jean Monnet, 92290, Chatenay-Malabry, France
- ⁷ Universite Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
- ⁸ Centro de Investigaciones Científicas, ETS Ingenieros de Caminos, Universidade da Coruña, A Coruña, Spain
- ⁹ Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
- ¹⁰ Environmental Data Techniques, Inc, 4515 Gardendale, BLDG 902, San Antonio, TX 78240, USA
- ¹¹CEA, DAM, DIF, Atomic Energy and Alternative Energies Commission, 91297 Arpajon, France
- ¹² Institute for Geological Sciences, Bern University, CH, 3012, Bern, Switzerland
- ¹³Department of Environmental Informatics, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- ¹⁴ BRGM, 3 Avenue Claude Guillemin, 45060 Orléans, France

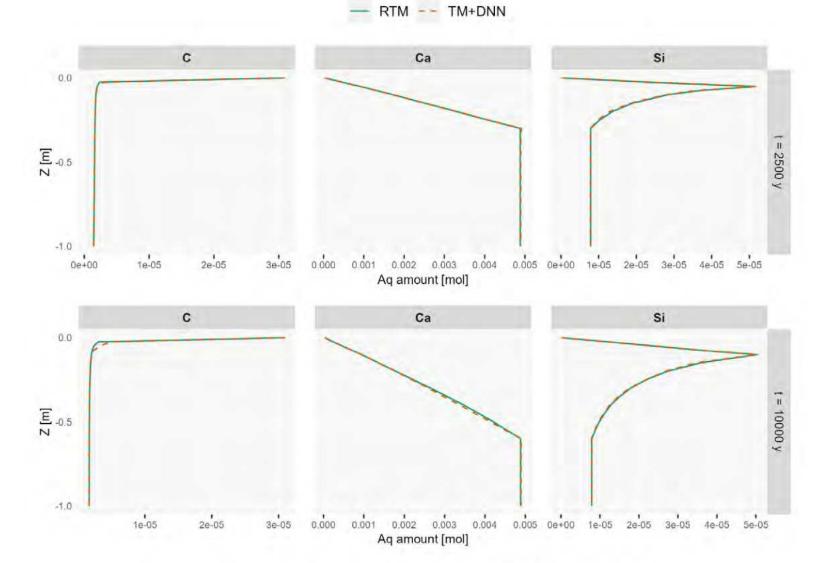
Contact: N. Prasianakis, nikolaos, prasianakis@psi.ch



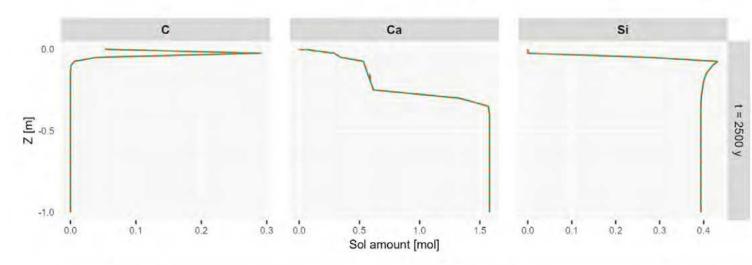


Application

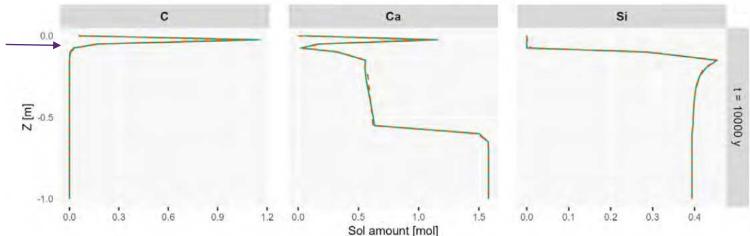
Simple cement: C, Ca, Si, O, H


- Portlandite, C-S-H
- Boundary solution is in equilibrium with Calcite
- Triggers leaching + calcite precipitation

Reference


DNN, Case Pc (15) – Aqueous amount profiles at

2 times


DNN, Case Pc (15) – Solid amount profiles at 2

times

- RTM -- TM+DNN

Calcite precipitation front

Conclusion

- Good accuracy and speedup of 5.5 (22) against HPx4C (HPx1C)
 - Close to "optimal" speedup ~ 85-90%
- Problem with more complex cement case (C-Ca-Si-Al-Cl-K-Na-Mg-S-O-H)
 - Limiting case for black-box DNNs?
- Follow-up in EURAD2 HERMES WP
 - Improve NN training set creation
 - Add physical constraints to NN training → physics-informed NNs (PINNs)
 - Accept/reject mechanism of ML predictions within the RT simulation
 - Apply to pore-scale RT simulation where geochemistry can take 99% of the CPU time

