




## CONCORD

CONtainer CORrosion under Disposal conditions

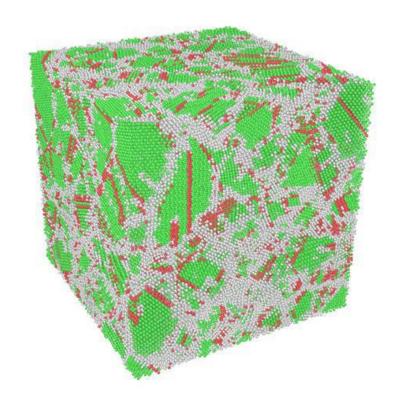
25/10/2024 • Roberto GAGGIANO



This project has received funding from the European Union's Horizon 2020 research and innovation programme 2014-2018 under grant agreement N°847593

## **MOTIVATION**

- Long-lived disposal containers for SF/HLW have been shown to be feasible and safe in several national programmes.
  - Can they be optimised?
  - Can the prediction of their lifetime become more accurate and robust?








#### **OBJECTIVES**

- 1. Explore the potential of novel container materials for the optimisation of container design and performance within the engineered barrier system.
- 2. Deepen the understanding of coupled interfacial processes influencing container performance under repository-relevant conditions, with a focus on:
  - 1. irradiation-accelerated corrosion,
  - 2. microbial activity,
  - 3. degradation during near-field transients.
- 3. Support performance assessment by demonstrating mechanistic understanding and by developing predictive models.





### **22 ORGANISATIONS FROM 12 COUNTRIES**







































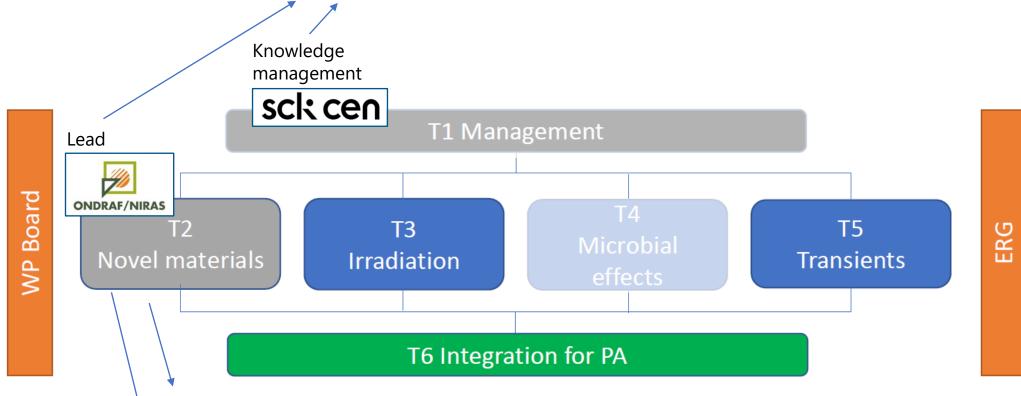













### **WP STRUCTURE**

**Training materials (D15.4)** 

Initial and final SotA reports (D15.1 and D15.2)

**ConCorD Synthesis Report (D15.14)** 



Novel materials and processes for the optimisation of long-term container performance (D 15.6)

**Contribution to EURAD knowledge management** 

→ 3.2.3 "Containers using advanced materials (Novel Containers)"





Buffer Filler Overpack Canister

Concrete lid

Envelope

Envelope

SNFA Canister

Concrete lid

- Up to now, no specific rock has been selected as host for geological disposal in Belgium and the repository design itself is still generic to a large extent.
- In addition, cement formulation could change in the future, towards lower pH cements
  - → impact on the evolution of the environmental conditions



Long-term safety function of the overpack: total containment of the radionuclides during at least the thermal phase by preventing contact between the wasteform and the porewater coming from the host formation.

- Important to:
  - Understand the general trends related to the corrosion behaviour of carbon steel in different environments
  - Keep an eye on alternative material soutions for the overpack

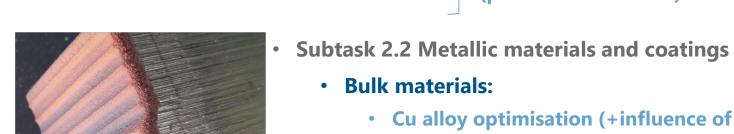


25/10/2024 26<sup>th</sup> Exchange Meeting

#### **SCIENTIFIC & TECHNICAL IMPACTS**

- Pre-screening and preliminary optimisation of promising novel materials
- In depth understanding of the relationship between irradiation and corrosion
- Refined understanding of the **role of microbes** in canister degradation and identification of critical factors affecting viability
- Systematic exploration of corrosion in an evolving environment
- Developed **models** for interpretation of experiments and for canister lifetime predictions
- Synthesis of all the above for use in canister development and performance assessment programmes
- Addressed fundamental questions will lead to:
  - Better designed and more focused future experiments
  - Pave the way for further canister optimisation




### **TASK 2: NOVEL MATERIALS**



- **Subtask 2.1 Ceramic Materials and Coatings** 
  - **Bulk materials:** 
    - SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> → sealing of ceramic container
    - Cr-doped SiC → sintering
  - **Coatings:** 
    - TiO<sub>2</sub>

CrN

**Process optimisation** (porosities and flaws)



**ALTERNATIVE METALLIC** 

**SOLUTIONS** 

**Bulk materials:** 

Cu alloy optimisation (+influence of impurities)

- **Coatings:** 
  - · Cu, Ti, Cr,

**Process optimisation** (porosities and flaws)

• Cu/Al<sub>2</sub>O<sub>3</sub>





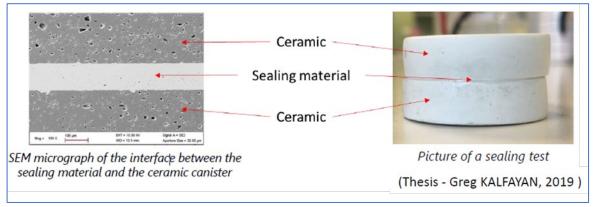
#### Activities:

- **Process optimization** 
  - Coatings
  - sealing of ceramics
- **Determination of properties:** 
  - physical/mechanical properties
  - leaching tests
  - simplified corrosion tests



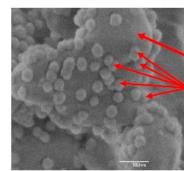







#### **ALUMINA SOLUTIONS**




- Sealing by microwaves process
  - Sealing materials previously achieved using specific silica-based glass (T < 700°C)

 Functionalization of particles by hetero-aggregation



3D illustration of alumina/silica heteroaggregation Orange : Silica particles

Red: Alumina particle



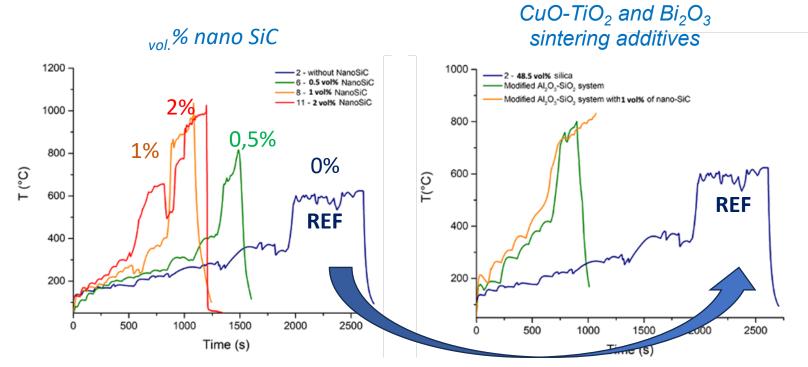
SEM micrograph of

alumina/silica

heteroaggregation

Alumina

Silica


• New materials targeted : Glass-bonded ceramics

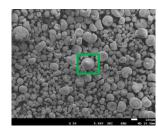
Sealing formulations based on silico aluminates with microwaves coupling

Objective: Improve the chemical affinities between the sealing material and the ceramic canister

### **ALUMINA SOLUTIONS**

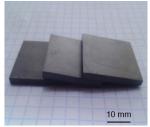
 $Al_2O_3+48,5\%$  SiO<sub>2</sub> = reference composition  $\rightarrow$  Different  $Al_2O_3/SiO_2$  systems as sealing materials




Real breakthrough in the optimisation of microwave coupling for such type of formulations.



#### **SILICON CARBIDE**


Focus on the optimization of the sintering process for the manufacture of composite materials

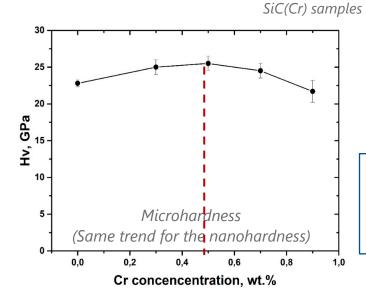
based on SiC doped with Cr.



Addition of Cr to the SiC powder (ball milling)






∆m/S, mg/cm<sup>2</sup>, o .0 .0

water at 90 °C)

1000

| SiC | powder | (40÷ | 100 | μm) |
|-----|--------|------|-----|-----|
|-----|--------|------|-----|-----|

| Samples        | Measured density,<br>g/cm <sup>3</sup> | From theoretic density of pure SiC,% |
|----------------|----------------------------------------|--------------------------------------|
| SiC (0 % Cr)   | 3.161                                  | 98.5                                 |
| SiC (0.3 % Cr) | 3.108                                  | 96.8                                 |
| SiC (0.5 % Cr) | 3.181                                  | 99.1                                 |
| SiC (0.7 % Cr) | 3.167                                  | 98.7                                 |
| SiC (0.9 % Cr) | 3.129                                  | 97.5                                 |



Oxidation and dissolution of SiC in water:

Changes in specific weight of SiC samples as a function of immersion time (distilled

t, hours

3000

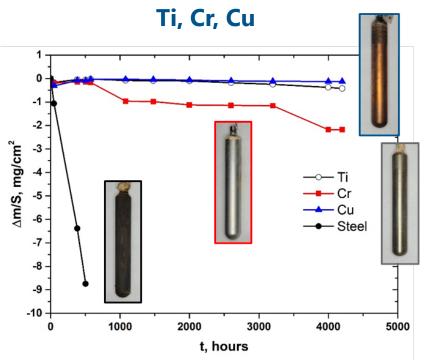
2000

- $SiC + 2H_2O = SiO_2 + CH_4$
- $SiO_2 + 2H_2O = Si(OH)_4$

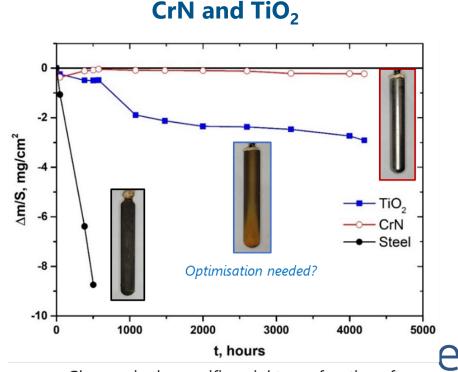
-1,0

**Cr forms a protective Cr oxide layer** 

--- SiC+0,3Cr --- SiC+0,5Cr


4000

5000

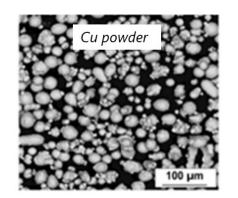

——— SiC

#### **CERAMIC AND METALLIC COATINGS**

- Focus on optimization of the PVD method for coating production (thickness: 30 μm)
- Good mechanical properties and a high degree of adhesion to the steel substrate at the optimum bias potential.

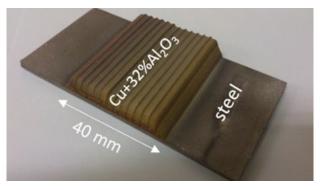


Changes in the specific weight as a function of immersion time in distilled water at 90 °C.




26<sup>th</sup> Exchange Meeting


Changes in the specific weight as a function of immersion time in distilled water at 90 °C.


#### **COPPER-ALUMINA COMPOSITE COATINGS**

Cold spray coatings studied are produced from a mixture of powders Cu+32vol.%Al<sub>2</sub>O<sub>3</sub>.



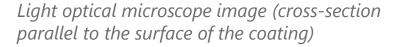






Composite cold spray coating coupon

- N<sub>2</sub> carrier
- 35 bars and 500°C
- 2 deposition speeds:
  - 20 mm/s
  - 40 mm/s


**Low porosity in deposition lines** (around 0.37%)

**Higher porosity** (2.47% to 3.31%) in overlap zones

| Materials                                     | 2 months<br>(53-60 days) | 3-4 months<br>(87-120 days) | 6 months<br>(180 days) |
|-----------------------------------------------|--------------------------|-----------------------------|------------------------|
| Wrought Cu                                    | 14 μm/y                  | 16 μm/y                     | 23 μm/y                |
| Pure Cu CSC                                   | 17 μm/y                  | 13 μm/y                     | 26 μm/y                |
| Composite Cu+32vol.%Al203 CSC (low strategy)  | 21 μm/y                  | 17 μm/y                     | -                      |
| Composite Cu+32vol.%Al203 CSC (fast strategy) | -                        | 47 μm/y                     | -                      |







# **Jacobs**





#### **TASK 3: CORROSION UNDER IRRADIATION**







- Goal: assess whether irradiation will contribute/accelerate the corrosion of candidate canister materials (steel and copper) under realistic conditions
  - T3.1 Total dose vs. Dose rate
    - Experimental window of several orders of magnitude of dose rates, total doses and exposure durations using simplified model systems
  - T3.2 Repository conditions
    - Explore the influence of type of bentonite, nature of irradiation source, effect of bentonite saturation, limit dose rate where no irradiation effect is seen.

#### Activities:

- Corrosion tests in irradiation facilities
- Post-mortem characterisation



# **Jacobs**





#### **TASK 3: CORROSION UNDER IRRADIATION**

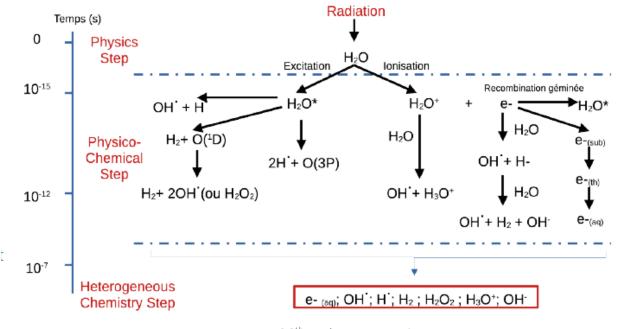






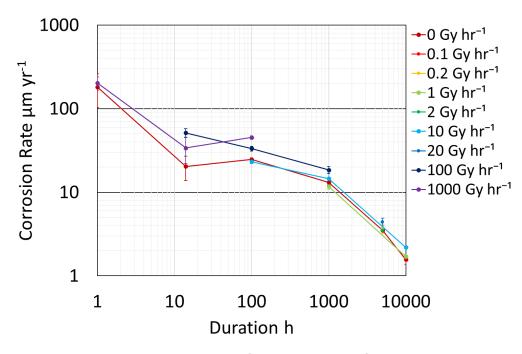
- Goal: assess whether irradiation will contribute/accelerate the corrosion of candidate canister materials (steel and copper) under realistic conditions
  - Focus on *bentonite buffer materials* with different saturation levels (FEBEX, MX-80, Ca-Mg Czech bentonite)
  - C-steel, copper, Ni-Alloy; corrosion products
  - Groundwater compositions (SGW3, FEBEX, NaHCO<sub>3</sub>)
  - Temperature (RT to 150°C)
  - Redox (aerobic, anaerobic)
  - Water saturation (full, partial, non saturated)
  - Nature of irradiation sources (Co-60, Cs-137)
  - Dose rates / Total dose (0-1000 Gy/hr; 0-400 kGy)

Bentonite buffers are <u>not</u> representative for the current Belgian programme:


- pH from near-neutral to slightly alkaline
  - → active corrosion
  - → film formation slowing down the corrosion rate with time

However irradiation affects water chemistry, generating oxydants

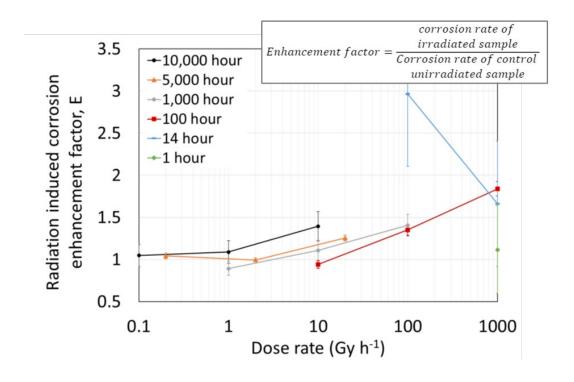
Understanding the general mechanisms and trends remains relevant.




- In terms results outcome:
  - A kind of consensus has been found on corrosion products of C-steel with basically a mixture of *Fe-oxy-hydroxides and carbonate* → the same "overall" mechanism?
  - Corrosion kinetics were found to depend on the experimental parameters and conditions (water saturation, temperature) → Link with expected repository conditions





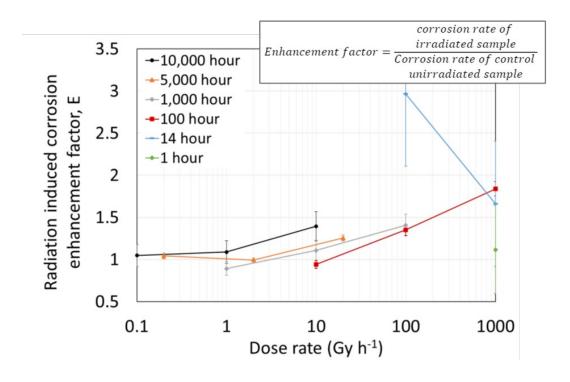

• The corrosion rate of **carbon steel** most strongly depended on exposure duration and could be loosely approximated by a power law relationship.



Average corrosion rate of carbon steel for set dose rates



- The corrosion rate of **carbon steel** most strongly depended on exposure duration and could be loosely approximated by a power law relationship.
- A significant increase in the corrosion rate due to radiation exposure was only observed at dose rates of 10 Gy/h or greater.
- At dose rates lower than 10 Gy/h no increase in corrosion rate associated with radiation was observed.




Influence of dose rate on the radiation induced corrosion enhancement factor, E.

- The corrosion rate of **carbon steel** most strongly depended on exposure duration and could be loosely approximated by a power law relationship.
- A significant increase in the corrosion rate due to radiation exposure was only observed at dose rates of 10 Gy/h or greater.
- At dose rates lower than 10 Gy/h no increase in corrosion rate associated with radiation was observed.
- At durations longer than those explored here, it is expected that a significant increase in enhancement factor may be observed at dose rates lower than 10 Gy/h

#### **Reference:**

25 Gy/h at the surface of the overpack of the supercontainer



Influence of dose rate on the radiation induced corrosion enhancement factor, E.













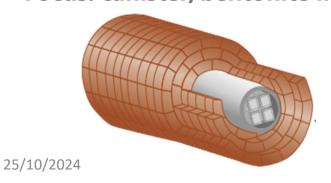


- Understand container corrosion during transients that would lead to chemo-mechanical interactions between the container material or coating (if present), corrosion products and buffer.
  - → Link to Task 3 and Task 4 activities
- To address existing uncertainties and to provide relevant experimental data to adequately account for these processes in performance assessment
  - → Link to Task 6 activities
- **Both laboratory and in-situ experiments**
















**Focus: canister/bentonite interface** 



#### TRANSIENTS ANALYSED

- Thermal
- Redox
- Radiation
- Hydraulic (saturation)
- Chemical evolution
- Gas evolution



26<sup>th</sup> Exchange Meeting

#### **TASK 5: TRANSIENTS**

- Studied materials:
  - Carbon steel
  - Spheroidal graphite cast iron
  - Copper-nickel alloy (Cu with about 30wt.% Ni)
  - Cu-OFP

- Contact to different types of bentonites, hydration with waters of different salinity and nature:
  - low salinity granitic waters,
  - bentonite porewater
  - sedimentary clay groundwater of high salinity.

- Carbon steel corrosion rate:
  - increase at higher temperatures
  - enhanced by combining temperature and irradiation
  - strong influence of bentonite type and porewater salinity
- Spheroidal graphite cast iron corrosion rate
  - Dependence on bentonite environment and salinity
  - Higher values found combining a  $\gamma$ -radiation dose of 130 Gy/h and temperature
- Very diverse corrosion products, highly dependent on the specific material and environmental conditions established at equilibrium.





# **Jacobs**



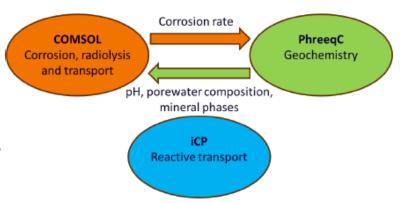


#### **TASK 6: MODELLING**



- Reactive transport modelling Links with Task 3 (irradiation) and Task 5 (transients)
- Geochemical modelling with microbial activity Links with Task 4 (microbial corrosion)
- Repository scale modelling contained within Task 6

#### Other work:


• ConCorD Synthesis Report (D 15.14) – Linked with all other Tasks



### **TASK 6: MODELLING**

### Development of modelling tools:

- Development of a water and chloride radiolysis model
- Development of an electrochemical corrosion model for carbon steel
- Integration of radiolysis and steel corrosion models into a reactive transport computational platform

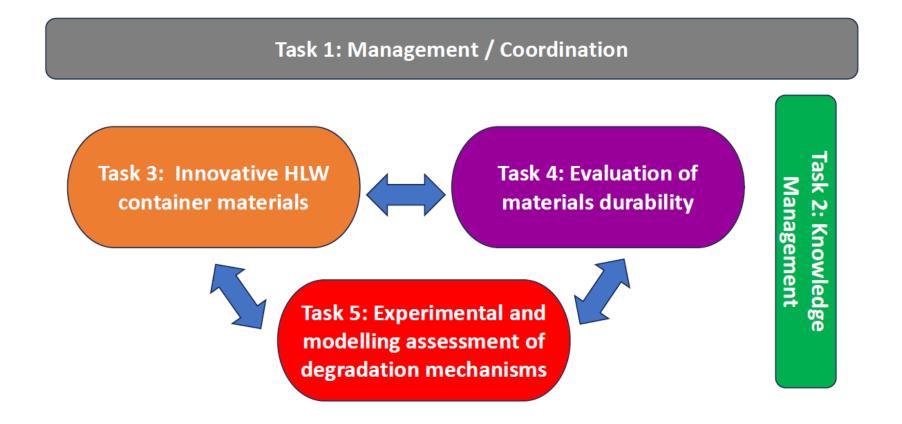


## Model application (Task 3 and Task 5)

- Simulation of irradiated experimental cells (carbon steel coupons embedded in compacted bentonite)
  - Corrosion rate
  - Corrosion potential
  - Porewater chemistry
  - Precipitation of corrosion products



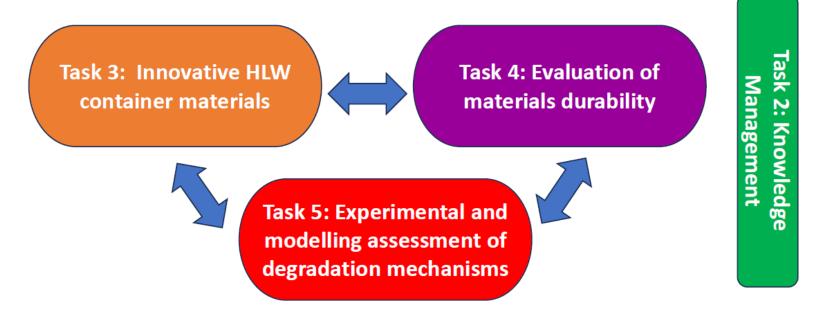
EURAD-2 **In**novative and new Container/canister materials under disposal field conditions: Manufacturing feasibility and improved **D**urability InCoManD (WP9)


# InCoManD: Objectives

Innovative and new Container/canister materials under disposal field conditions: Manufacturing feasibility and improved Durability

- → Innovative: solutions (materials and/or processes) never implemented or tested.
- → New: more traditional solutions (materials and/or processes) that need to be optimized, improved, tested in more realistic conditions...
- → Container and canister: same meaning, can be referred to as "component"
- The WP aims\* at identifying and qualifying innovative solutions for the HLW containers/canisters, as well as providing a deep knowledge of the long-term durability of any selected material in, as realistic as possible, field conditions.

<sup>\*</sup>starting from the ConCorD project outcomes and going beyond...


# InCoManD: Organization in 5 Tasks



# InCoManD: Organization in 5 Tasks

- Improve recently selected (within ConCorD) innovative bulk and coating materials
- Seek new options
  - → Elaboration and optimization of fabrication processes

Evaluate the durability (i.e. corrosion resistance under **transients**) of the materials identified in Task 3 or previously recognized as reference materials → Identification of main degradation mechanisms



- Study of joint mechanical-corrosion degradation modes
- Determine threshold stresses for SCC
- Modelling of geochemistry and time-dependent transients

- Knowledge capture
- Knowledge transfer
- Additional KM activities: Summer School in Slovenia in 2027

## **THANK YOU FOR YOUR ATTENTION!**



**ANY QUESTION?** 

