

Design and construction: outlines and planning

Wim Bastiaens

Content

- Disposal concept some reminders
- Design process some theory
- Construction of auxiliary facilities
 some pictures
- Construction of the disposal facility some facts and figures
- Demonstration projects some RD&D and movies
- Some concluding remarks

Concept: Surface disposal

Overall planning

Design process

Design process (1/2)

Design process (2/2)

Construction of auxiliary facilities

Aerial view of the site

STORAGE BUILDING FOR LOW-LEVEL WASTE

CAISSON PRODUCTION FACILITY

Caisson production facility

Caisson production facility

MONOLITH PRODUCTION FACILITY (IPM)

IPM

Design of the monoliths

- Reinforced concrete boxes
 - Project specific concrete composition
 - Controlled hardening conditions
- Three types
- Wall thickness 12 cm
- Surface: 1,95 m x 1,95 m
- Stacked 5 or 6
 - 1,35 m (Type I) of 1,62 m (- II/III)
- 780 à 936 per module
- Max 20 ton
- Max 20 mSv/h contact dose rate
- Fibre reinforced alternative is being studied

DISPOSAL MODULES AND ACCESS CLUSTER

Construction of disposal facility

Site preparation

Construction sequence (20 modules)

Construction sequence (20 modules)

Construction – Foundations

- 1. Soil mixing (non-swelling bentonite)
- 2. Drainage layer• Gravel and geotextiles
- 3. Sand-cement embankment 2,0 m
 - 5 w% cement

0,6 m

Construction - modules

- 1. Walls
- 2. Concrete pedestal
- 3. Foundation slab
- 4. Columns
- 5. Support slab
- 6. Structural topslab
- 7. (Backfilled) gaps between stacks
- 8. (Backfilled) inspection room
- 9. Drainage system (→ Anti-bathtub system)

70-85 cm thickness - 25 x 27 x 11 m³
roof structure fixing
70-90 cm thickness
75 x 75 cm (12 x 13)
70 cm thickness
40 cm thickness
fine gravel, nominal width: 5 cm
60-80 cm height

Construction sequence of a module

- Goals
 - Limit (shrinkage related) cracks and construction joints
 - Technological feasibility
- Construction sequence
 - Construct walls first (1 phase ~1.000 m³)
 - Semi-traversing formwork
 - Limit friction at the bottom of the walls & loosen internal formwork
 - Construct slabs & columns later using coupler systems to connect rebars
- On-site concrete plant
- Project specific **concrete mix** design with a focus on long-term durability
 - Attack mechanisms ?
 - → limit risks by design
- Tested in **demonstration test** (see further)

Construction – steel roof structure

- Insulated, protects modules
 - from wind, rain, snow, temperature (variations)
- Each module is structurally independent
 - Cope with differential settlements

Construction – steel roof structure

- Insulated, protects modules
- Each module is structurally independent
- Fixed on concrete pedestals
- Runway beams are integrated

Construction – contractual matters (1/2)

- Public procurement
 - Negotiation procedure
 - Selection phase
 - Initial offer
 - Negotiation
 - Best And Final Offer
 - Contract (Q4 2024)
 - Divided in 2 lots
 - Civil construction works
 - Electromechnical works

Construction – contractual matters (2/2)

Also focus on

- QA & QC
 - Starting from tender phase
 - Approval of intervention plans before works can start
 - Test panels (concrete & foundations)
 - Traceability
- Environment
 - Transport
 - Treatment of concrete/water
 - Noise and dust control
- Social measures

DEMONSTRATE feasibility: test materials and construcion techniques

Testing settlements

Testing & optimizing construction techniques

Demonstration test

Several test panels to

- optimise concrete composition
- optimise rebar configuration
- optimize concreting operations: use concreting tube
- optimize concrete compaction → use SCC for the walls
- Optimise carbonation resistance (CPFliner)

Concreting tubes

- limit drop height of concrete
- get concrete all the way to the bottom of the formwork without 'splashing' onto the rebars
- 5 in each module wall
- remain inside the structure

PROTOTYPES

Testing robustness

Testing process equipment (IPM)

- System of natural materials and foils
 - Biological layer
 - Bio-intrusion barrier
 - Infiltration barrier
 - Drainage layer
 - Fibre-reinforced concrete slab
- Protect underlying layers
 - Divert water
 - Avoid damage by roots and animals
 - Provide stable and favorable conditions for buried components

TEST COVER

Some concluding remarks

- The design of the surface disposal facility was driven by LT safety
- Feasibility was also addressed, a.o. by large-scale testing
- Auxiliary facilities are constructed
- Public procurement procedure is ongoing
- LT safety is to a large extent realised during construction → QA/QC

Design and construction: outlines and planning

Wim Bastiaens