

Monitoring strategies for radioactive waste disposal

The case of Geological Disposal

Christophe Depaus
ONDRAF/NIRAS

22nd Exchange meeting Mol, Belgium October 1st 2019

Outline

- What's new since 2013 (18th E.M.)?
- From the law to the strategy
- Role of repository monitoring in a safety case
- High-level strategy elements: strengths and weaknesses
- Examples (of strategies) from abroad
- Belgium?
- Conclusions

What's new since 2013? w.r.t « monitoring » of GDF

- EU project MoDeRn 2020
 - WP 2 : monitoring programme design basis, monitoring strategies and decision making
- Belgian law of 3rd June 2014 (2011/70/Euratom)
 Art.4:
 - « The national policies […] will contain:
 - modalities of reversibility, retrievability and monitoring for RW disposal;
 - for a <u>period to be determined [...]</u>;
 - the modalities taking due account of the safety of the disposal system »

From the law to the strategy. Meaning of modalities?

- Modalities may refer to several questions:
 - What ?Packages/elements of EBS/ host rock will be monitored ?
 - Where ?
 In situ or in a pilot facility ?
 - When?
 before operation or/and during w. emplacement or/and after closure?
 - (How?)
 - → refer to the means, tools and instrumentation
 - → beyond the scope of WP2 (strategy)
 - → beyond the scope of national policy !!

From the law to the strategy Monitoring strategy for disposal?

Strategy = plan/approach for successfully achieving a specified objective

 Monitoring strategy = high-level approach to repository monitoring including consideration of what; where and when.

- The development of a monitoring strategy is important
 - To comply with law and/or;
 - To initiate policies

...But first of all, to <u>define the role</u> of monitoring in the Safety Case (= high-level approach)

Reminder/ Monitoring definition (IAEA, SSG-31, 2014):

« <u>Monitoring</u> refers to <u>continuous or periodic observations and measurements</u> to help <u>evaluate the behaviour</u> of <u>components</u> of a waste disposal system and <u>the impact of the waste disposal system</u> on the public and the environment. Most specifically, it covers the measurement of <u>radiological</u>, <u>environmental</u> and <u>engineering</u> parameters »

MoDeRn2020 adds to the definition:

- or **other** parameters/characteristics/indicators
- In order to support decision making during disposal process and to enhance confidence in the disposal process

- Demonstration of safety does not/ should not rely on monitoring...
 - ... but the « monitoring programme should be used to strenghten the safety case and to build confidence in safety »;
 - ... and one of the objectives of monitoring is to « verify that the disposal system is performing as expected, as set out in the safety case » (IAEA, SSG-31).

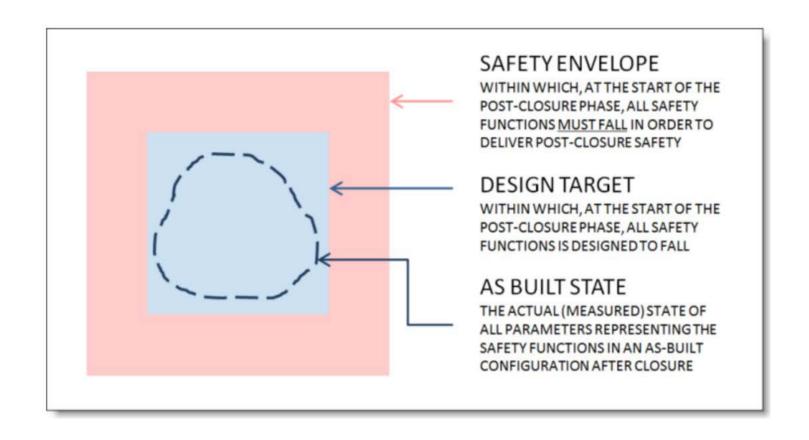
Ambiguity ?!

→ Monitoring outcomes must be used in the correct context

- Monitoring results cannot be (directly) compared to safety assessment model results. Why?
 - Safety assessment is based on the performance of barriers /SFs NOT a detailed evolution of system;

- Safety assessment models use conservative/pessimistic assumptions and do not address all sub-system behaviour

 Monitoring results can only be compared with models of (sub-)system evolution predicting parameters that are monitored (« History matching »)


←→ IAEA: « To verify that the **key assumptions** made and models used to assess safety are **consistent** with actual conditions » (IAEA, SSG-31)

←→ requirement for kind of « calibration »

In short,

such monitoring results can be compared with the <u>arguments made in a safety case</u> to check whether the <u>repository system is evolving in a way</u> that has already been <u>demonstrated to be safe</u>.

IAEA GEOSAF I & II developed an inspiring theoretical framework:

 Monitoring might be undertaken as part of verifying compliance with design requirements

 Monitoring can be used to check features of the repository evolution to provide additional confidence in performance

BUT

Should be designed so as **not to reduce the** *overall* **level of safety** of the facility after closure (IAEA, SSR-5, 2011)

In reality, monitoring might affect the performance of the multi-barrier system (MoDeRn2020, D2.1)...acknowledged as an outstanding issue :

« Is it better to know what's happening and accept a decrease in performance OR maintaining fully intact barriers and not know what is happening? »

(MoDeRn2020)

→ The extent to which monitoring affects performance should be addressed by monitoring strategy (MoDeRn2020)

 Monitoring may be required to address regulators requirements or public concerns

```
←→ to demonstrate compliance with regulatory requirements (...)
←→ to provide information for the public (IAEA, SSG-31)
```

- Monitoring can provide the principal input for the periodic updates of the safety case
- Monitoring can provide information for R&R during operational period

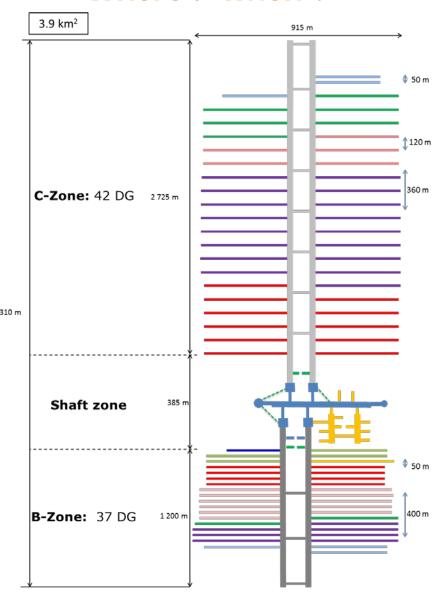
High-level strategy elements Where, what, when

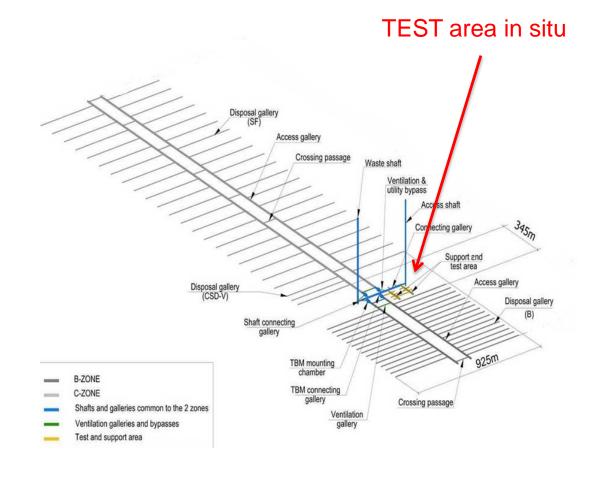
Where ?	What ?	When?
In situ	Waste/EBS	Before operation
Pilot facility	Dummy packages/EBS	During waste emplacement
(URCF)	Geological barrier	After closure

Strengths and weaknesses

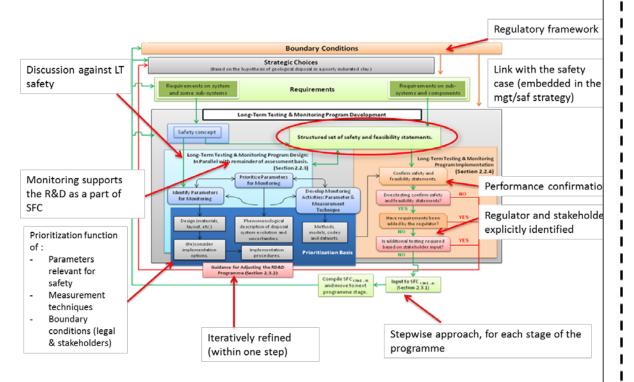
?	Strenghts	Weaknesses
In situ	real repository conditions	wired systems may affect processes
Dummy packages	Sensors in the packages	THMC (B) : Ok Radiological: NOK
After closure	Provides confidence once waste/NF no longer accessible	Timeframe representative?

(excerpts of MoDeRn2020 analysis)

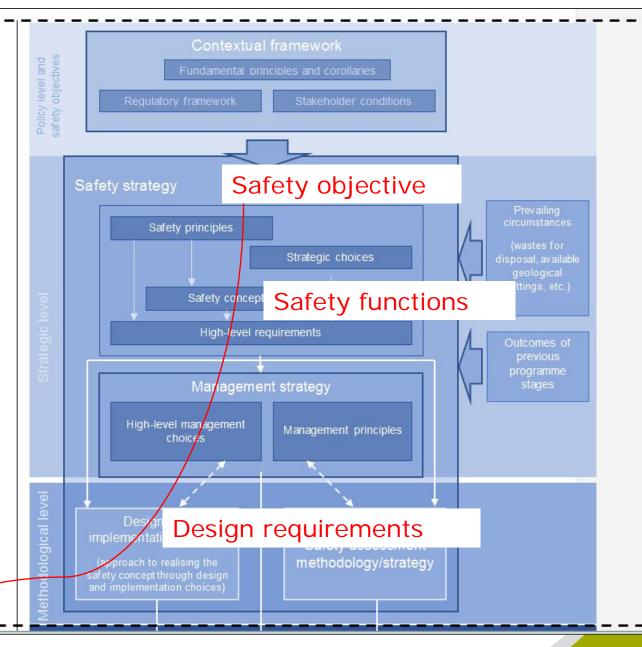

e.g.


Examples from abroad

Strategies combining in ≠ ways what/where/when


?	ANDRA	SKB/POSIVA	NAGRA
Where	In situ	In situ	Pilot /UCRF
What	Broad scope Emplaced cells + EBS Pilot facility (with real waste)	Limited scope Dummy packages + EBS (plugs) UCRF	Real waste/EBS/Host rock (ENSI requirement) Hydrogeology (UCRF)
When	Pilot: Preliminary phase (10 years before operation) Operational phase	Operational phase	Operational phase until closure
How	Surveillance/current structures + standard disposal cells Pilot facility	URCF, in situ NO monitoring of full waste/EBS not to impair SF's	Not heavily instrumented UCRF in situ without real waste

Belgium ? Where / when ?



Belgium? What?

Monitoring strategy such as presented in 2013

Vanessa's presentation (cAt)

Belgium ? But seriously...

- Implementing such a strategy would require significant efforts and resources;
- But since 2013, there was another major change in the context (in addition to MoDeRn2020 and the law of transposition):
 - O/N was asked to investigate other potential host rocks than poorly indurated clays → The foreseen safety case can only be generic
- Therefore, the focus shifted towards:
 - a watch of international monitoring programmes;
 - technological developments of monitoring techniques;
 - REX of monitoring in HADES → Jan Verstricht's presentation

Conclusions

- Monitoring strategy is the high-level approach which addresses the questions what/where/when (& how) to be monitored;
- Strategy frames the monitoring activities in order to comply with law and to address several concerns from the regulatory body, the public but also the scientific community and the implementers (≠ perspectives !?)
- Monitoring programmes can vary from country to country, ranging from broad to limited scope, from in situ to pilot or a combination thereof
- Degree of implementation of monitoring strategy seems to be strongly correlated to the national commitment towards GDF